Post-traumatic distal interphalangeal finger joint reconstruction using a free hemi-joint transfer from the fifth toe middle phalanx
Arielle Salona, Pierre Journeaub and Jean Luc Drapec

We present three cases of finger distal interphalangeal joint reconstruction in children using a new donor site, the middle phalanx of the fifth toe, transferred as a non-vascularized graft. The patients were followed a minimum of 36 months with serial radiographs, magnetic resonance imaging and photographs. Alignment was improved and persistent growth was demonstrated in all cases. Post-operative magnetic resonance imaging of the grafted phalanx and control toe showed comparable signals. The absence of a proximal epiphysis of these toe phalanges may have an important role in their survival after free transplantation, and may promote continued growth. J Pediatr Orthop B 14:116-119 © 2005 Lippincott Williams & Wilkins.

Introduction

Free toe phalanx transfers have become an accepted procedure for the treatment of congenital hand deformities, but are less often used in secondary post-traumatic indications. We have had to deal with several cases of distal interphalangeal (DIP) deviation and epiphysiodisis after crush injuries in very young children. Cosmetic impairment due to a short and crooked digital extremity was the immediate motivation for reconstruction, but parents were most anxious about growth arrest predictable on radiographs. Parents were informed that a simple method to correct deviation could be an osteotomy or a DIP arthrodesis.

However, together with the families, we chose to realign the DIP joint and attempt to restore some growth in one procedure, using a free hemi-joint transfer of an intercalary toe phalanx. The smallest phalanx potentially available for transfer was naturally the middle phalanx of the fifth toe. The fifth toe middle phalanx behaves like a chondroepiphysis, which is different from other phalanges transferred so far. It also has the right dimensions for a free half-joint transfer, replacing the base of a terminal phalanx when deviated and epiphysiodisis applied after crush injury. Parents were aware that the overall size of the reconstructed digit may not be normal, and that the proposed reconstruction was an experimental but logical attempt to recover some joint motion and growth, with minimal expense on the donor site. The more ambitious alternative of free vascularized articular transfer was not considered, because it was much larger surgical intervention.

Patients and methods

DIP deviation and epiphysiodisis of the terminal phalanx after severe crush injury was found in three young children (age at trauma, 2–4 years). All three had open, displaced growth plate injuries. They had been managed initially by open reduction and pinning. Deformity was already apparent 1 year after trauma (Fig. 1), but surgery was delayed due to diverging therapeutic advice. Ages and clinical features are detailed in Table 1. All three children were scheduled for a free fifth toe second phalanx transfer.

The DIP joint was exposed through a transversal, dorsal approach. Flexion deformity and lateral deviation of the distal phalanx were corrected by subperiostial anterior or lateral release, through a trans-articular dorsal exposure. No anterior arthroscopy was done, to avoid scarring or devascularization. Fibrous tissue at the base of the terminal phalanx was resected, creating a gap corresponding to the entire proximal epiphysis. Collateral ligaments and the volar plate were preserved.

The second phalanx of the little toe was harvested with the periostecum, the proximal joint capsule and collateral ligaments. The distal articular part of the toe second phalanx was trimmed to obtain intimate bone to bone contact with distal remnants of the finger terminal phalanx. The toe phalanx was skewered on a 0.8 mm or 1.0 mm Kirshner wire and pinned for 4–6 weeks with the reconstructed DIP joint in 0° extension. The collateral ligaments were not repaired, but were left to attach by adhesions. The dorsal capsular and extensor tendon were
approximated with thin absorbable sutures. At the donor site, the flexor and extensor tendons of the toe were not sutured together to promote a shorter, but active fifth toe.

During follow-up of these children, score of satisfaction assessed by the child or his parents (bad, fair, good, very good) and detailed clinical features of angular correction of DIP deviation, length, cosmetic aspect and joint motion of both finger and donor toe were recorded. Antero-posterior and lateral radiographs and photographs of the operated finger, contralateral finger and fifth toe were taken to monitor axial growth and appearance. Magnetic resonance imaging (MRI) of the grafted finger and of the control non-operated opposite fifth toe investigated joint surfaces, vitality of the phalanges and growth structures 6 months postoperatively, using a high spatial resolution surface coil with T1 and T2-weighted sequences.

Results

Follow-up was at 43 (case 1), 42 (case 2) and 36 (case 3) months. All fingers were cosmetically improved, and satisfaction was high (two very good, one good). The two deviated and stiff DIP joints had an angular correction of 50° and 40°, resulting in normal alignment, and recovered 20° and 10° of active motion (Table 1 and Fig. 2). The preoperatively unstable DIP (case 2) recovered the best mobility (0–60° active motion). Radiograph showed that all grafted phalanges were united to the terminal phalanx at 6 weeks.

No distal bony resorption occurred in any of the cases. Radiographically, the grafted phalanges grew in the same proportion as follow-up as did the control toe. MRI confirmed that control fifth toe middle phalanges did not have a classic proximal epiphysis and behaved as flat bones, with peripheral growth. In comparison, all proximal and distal toe phalanges, and the middle phalanx of the second and third toes behaved as long bones, with a proximal epiphysis whatever the age.

The grafted phalanx at 6 months had a normal and intermediate signal intensity on unenhanced T1-weighted images on MRI and the articular surface of the grafted phalanx appeared regular (Fig. 3).

Discussion

The indication for reconstructing and realigning the DIP joint seems justified by the conservation of a good fingertip. The need to correct DIP range of motion and to restore some growth to the terminal phalanx brought us to a free toe phalanx transfer.

Buck-Gramcko [1] has widely popularized this technique in congenital cases. He emphasized that the aim of a free phalanx transfer is not only stabilization and lengthening of aplastic digits but also the transfer of a hemi-joint to

Table 1 Patient ages and clinical features

<table>
<thead>
<tr>
<th>Patient</th>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages at trauma (years)</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ages at surgery (years)</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Preoperative appearance</td>
<td>Hammer-like tip, 60° DIP flexion deformity, short extremity</td>
<td>Unstable, very short extremity</td>
<td>Flexion deformity 40°, lateral deviation 40°, short extremity</td>
<td></td>
</tr>
<tr>
<td>Radiograph</td>
<td>Proximal epiphysiodisis of third phalanx</td>
<td>Proximal epiphysiodisis and resorption of third phalanx</td>
<td>Epiphysiodisis of third phalanx</td>
<td></td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>43</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Active DIP flexion-extension (°)</td>
<td>10–30</td>
<td>0–60</td>
<td>0–10</td>
<td></td>
</tr>
<tr>
<td>Postoperative deviation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Postoperative radiograph</td>
<td>Graft fused, no evidence of growth arrest, no resorption of terminal phalanx</td>
<td>Graft fused, no evidence of growth arrest, no resorption of terminal phalanx</td>
<td>Graft fused, bone maturity achieved, no resorption of terminal phalanx</td>
<td></td>
</tr>
</tbody>
</table>

DIP, distal interphalangeal.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
obtain mobility. He was the first author to report on joint motion at follow-up in a large series. Free phalanges have also been used, less frequently, in post-traumatic cases, with encouraging results on length [2-4]. These results encouraged our choice for a growing free half-joint transfer, as opposed to a vascularized microsurgical transfer, which in any case the parents of our patients did not approve.

There are several advantages to the use of fifth toe middle phalanges to reconstruct terminal phalanx injuries affecting the DIP joint and terminal phalanx growth plate in children. The shape and size are adequate for the purpose. Length is not as much of an issue in trauma as opposed to congenital defects, when final size of the digit is the challenge. In symbrachydactyly, proximal phalanges are commonly preferred for transfers, because restoration of length is an important consideration. Some authors preferred to use the proximal phalanges from the third or fourth toe to avoid a possible deformity and instability. Cavallaro [5] described this possible complication, but he never used a phalanx transfer from the fifth toe in his series. We never observed these problems using the fifth toe, maybe because we did not perform a suture with flexor and extensor tendons together. Therefore, the fifth toe is progressively and moderately shortened, without instability or deformity (Fig. 4). For the DIP joint one only needs a small spacer and a hemi-articular transfer with some growth reserve. The middle phalanx of the fifth toe is the smallest in the human body, and naturally appeared as the ideal donor. It had the periosteum required for growth, and the cosmetic and functional expense on a little toe is negligible.

A second advantage is the growth pattern, compared with all other phalanges. We learned from our experience with congenital symbrachydactyly that fifth toe middle phalanges had no visible proximal epiphysis. The cartilaginous proximal epiphyses often present in the proximal
avascularity before successful incorporation can occur and longitudinal growth can resume. During that period the graft is nourished by tissue fluid alone. Buck-Gramcko showed that by three postoperative years all proximal epiphysis were fused on transferred toe first phalanges. In our cases, the occurrence of growth arrest could not be evaluated by physical patency on radiographs because of the special behaviour of the proximal physis, as a chondro-epiphysis or flat bone with peripheral growth. This could make them possibly more resistant to ischaemia after avascular transfer.

The only possible radiographic evaluation was to compare the size of the transferred and control toe middle phalanges. All three transferred toes grew symmetrically on scaled films, when compared with their control. The phalanges with longest follow-up showed no evidence of growth arrest on serial radiograph measures. MRI at 6 months showed no change in the epiphyseal bone or cartilage.

In conclusion, functional and cosmetic expense on the donor toe is negligible. They seem to us a very promising donor, particularly for half-joint reconstruction in children with DIP joint deformity after injuries involving the terminal phalanx growth plate, when a pre-shaped growing spacer is more important than immediate length.

Acknowledgements

We are specially grateful to Dr. Peter Amadio (Hand Surgery Department, Mayo Clinic, Rochester, Minnesota, USA) for reviewing the manuscript, and his kind help and advice.

We thank Dr. Laurence Mainland (Paediatric Radiology Department, Royal Hospital, CHU de Nancy, France) for his help with illustrations.

References